Short period PM2.5 prediction based on multivariate linear regression model
نویسندگان
چکیده
منابع مشابه
mortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولResearch of Regional Forest Fire Prediction Method based on Multivariate Linear Regression
In order to achieve the predicted speed, high accuracy, the use of simple purpose, forest fire prediction of the key issues is to choose the main predictors. Forest fire prediction involves many factors, some of which are stable factors such as climate, topography, forest characteristics; and some unstable factors, such as fuel moisture content, meteorological factors, and other sources of igni...
متن کاملTag SNP Selection Based on Multivariate Linear Regression
The search for the association between complex diseases and single nucleotide polymorphisms (SNPs) or haplotypes has been recently received great attention. For these studies, it is essential to use a small subset of informative SNPs (tag SNPs) accurately representing the rest of the SNPs. Tagging can achieve budget savings by genotyping only a limited number of SNPs and computationally inferri...
متن کاملA Short-Term Prediction Model Based on Support Vector Regression Optimized by Artificial Fish-Swarm Algorithm
In urban management, it is important to precisely forecast the short-term demand for necessary resources, including water, electric power, and gas. Although a variety of prediction models have been proposed in literature, the underlying defects and limitations confine the effectiveness and forecasting precision of these models. In this paper, the shortterm prediction problem is modeled as a non...
متن کاملMulti-period monitoring and prediction of forest cover loss using logistic regression model in Arasbaran catchments
Knowledge and understanding of changes in forest cover in relation to environmental factors (topography) can be valuable in terms of conservational and protective guidances. The purpose of this study was to identify, quantify and predict deforestation in relation to topographic variables using logistic regression model. The Arasbaran catchments (Naposhtehchay, Ilginehchay and Mardanqumchay) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2018
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0201011